A stabilizer free weak Galerkin finite element method on polytopal mesh: Part II

نویسندگان

چکیده

A stabilizer free weak Galerkin (WG) finite element method on polytopal mesh has been introduced in Part I of this paper (Ye and Zhang (2020)). Removing stabilizers from discontinuous methods simplifies formulations reduces programming complexity. The purpose is to introduce a new WG without that convergence rates one order higher than optimal rates. This the first achieves superconvergence mesh. Numerical examples 2D 3D are presented verifying theorem.

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Weak Galerkin Finite Element Methods on Polytopal Meshes

This paper introduces a new weak Galerkin (WG) finite element method for second order elliptic equations on polytopal meshes. This method, called WG-FEM, is designed by using a discrete weak gradient operator applied to discontinuous piecewise polynomials on finite element partitions of arbitrary polytopes with certain shape regularity. The paper explains how the numerical schemes are designed ...

متن کامل

A Weak Galerkin Mixed Finite Element Method for Biharmonic Equations

This article introduces and analyzes a weak Galerkin mixed finite element method for solving the biharmonic equation. The weak Galerkin method, first introduced by two of the authors (J. Wang and X. Ye) in [52] for second order elliptic problems, is based on the concept of discrete weak gradients. The method uses completely discrete finite element functions and, using certain discrete spaces an...

متن کامل

Weak Galerkin Finite Element Method for Second Order Parabolic Equations

We apply in this paper the weak Galerkin method to the second order parabolic differential equations based on a discrete weak gradient operator. We establish both the continuous time and the discrete time weak Galerkin finite element schemes, which allow using the totally discrete functions in approximation space and the finite element partitions of arbitrary polygons with certain shape regular...

متن کامل

Fast Finite Element Method Using Multi-Step Mesh Process

This paper introduces a new method for accelerating current sluggish FEM and improving memory demand in FEM problems with high node resolution or bulky structures. Like most of the numerical methods, FEM results to a matrix equation which normally has huge dimension. Breaking the main matrix equation into several smaller size matrices, the solving procedure can be accelerated. For implementing ...

متن کامل

Element free Galerkin method for crack analysis of orthotropic plates

A new approach for analyzing cracked problems in 2D orthotropic materials using the well-known element free Galerkin method and orthotropic enrichment functions is proposed. The element free Galerkin method is a meshfree method which enables discontinuous problems to be modeled efficiently. In this study, element free Galerkin is extrinsically enriched by the recently developed crack-tip orthot...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal of Computational and Applied Mathematics

سال: 2021

ISSN: ['0377-0427', '1879-1778', '0771-050X']

DOI: https://doi.org/10.1016/j.cam.2021.113525